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Abstract. Since their early application to elliptic partial differential equations, multigrid
methods have been applied successfully to a large and growing class of problems, from elas-
ticity and computational fluid dynamics to geodetics and molecular structures. Classical
multigrid begins with a two-grid process. First, iterative relaxation is applied, whose effect is
to smooth the error. Then a coarse-grid correction is applied, in which the smooth error is
determined on a coarser grid. This error is interpolated to the fine grid and used to correct the
fine-grid approximation. Applying this method recursively to solve the coarse-grid problem
leads to multigrid.

The coarse-grid correction works because the residual equation is linear. But this is not the
case for nonlinear problems, and different strategies must be employed. In this presentation
we describe how to apply multigrid to nonlinear problems. There are two basic approaches.
The first is to apply a linearization scheme, such as the Newton’s method, and to employ
multigrid for the solution of the Jacobian system in each iteration.

The second is to apply multigrid directly to the nonlinear problem by employing the so-
called Full Approximation Scheme (FAS). In FAS a nonlinear iteration is applied to smooth
the error. The full equation is solved on the coarse grid, after which the coarse-grid error is
extracted from the solution. This correction is then interpolated and applied to the fine grid
approximation.

We describe these methods in detail, and present numerical experiments that indicate the
efficacy of them.

1. Introduction

Multigrid methods have become a common approach for solving many types of linear prob-
lems of the form Au = f . We denote by v an approximation to the exact solution u and by e
the error, e = u−v. Defining the residual to be r = f−Av, we observe the critical relationship
known as the residual equation, namely Ae = r. In brief, multigrid is the recursive application
of a two-grid process. First, an iterative method, such as Gauss-Seidel or Jacobi relaxation,
is applied to the fine-grid problem. These iterations have the property that after relaxation
the error will be smooth. This in turn means that the error can be accurately represented
on a coarser grid (e.g., with every second gridpoint removed in each coordinate direction).
Since the coarse grid is much smaller than the fine grid, it is much less expensive to work on
the coarse grid. These facts permit the second part of the process, known as the coarse-grid
correction. The fine-grid residual rh is computed and restricted to the coarse grid r2h = I2h

h rh,
where it is used as the right-hand side of the coarse-grid residual equation A2he2h = r2h. This
equation is solved, and the error thus determined is then interpolated back to the fine grid



where it is used to correct the fine-grid approximation, vh ← vh + Ih
2he

2h. By recursively
solving the coarse-grid equation with this two-grid process, a multigrid algorithm is defined.

Nonlinear problems necessarily must be solved using iterative methods, and for this reason
it is natural to expect that multigrid ideas should be effective on these problems. Consider a
system of nonlinear algebraic equations, A(u) = f , where u, f ∈ Rn. Once again the error is
given by e = u− e while now r = f −A(v) is the residual. Subtracting the original equation
from the residual, we obtain

(1.1) A(u)− A(v) = r.

Since A is nonlinear, in general A(e) 6= r, implying that for the nonlinear problem we can
not determine the error by solving a simple linear equation on the coarse grid, as in standard
multigrid. Instead, we must use (1.1) as the residual equation.

There are two basic approaches to using multigrid in the solution of (1.1). One is to use
multigrid as the linear solver in a standard linearization, such as in Newton’s method or
Picard iteration. We briefly describe one such approach, Newton-multigrid, in the following
section. The second approach, known as the Full Approximation Scheme (FAS), is to apply
multigrid methodology directly to the original equation A(u) = f and to base the coarse-grid
correction on the nonlinear residual equation (1.1). We describe FAS in section 3. Finally, we
demonstrate the usage of both FAS and Newton-multigrid on some simple model problems in
section 5.

2. Newton-Multigrid

Undoubtedly most important method for solving nonlinear equations is Newton’s Method.
Suppose we wish to solve the scalar equation F (x) = 0. By expanding F in a Taylor series
about an initial guess x0 we obtain

F (x0 + s) = F (x0) + sF ′(x0) +
s2

2
F ′′(ξ)

for some ξ between x0 and x0 + s. If x0 + s were the solution, then neglecting the second-
order term and solving for s we obtain an improved approximate solution given by x0 ←
x0 − F (x0)/F

′(x0). This is easily turned into the Newton iteration:

xj ← xj − F (xj)

F ′(xj)
.

We can use (1.1) as a basis for a multigrid solver by applying Newton’s method to the system
of n nonlinear equations

A(x) ≡




A1(x1, x2, . . . xn)
A2(x1, x2, . . . xn)

...
An(x1, x2, . . . xn)


 =




0
0
...
0


 .



Letting J(v) be the Jacobian matrix

J(v) =




∂A1

∂x1

∂A1

∂x2
· · · ∂A1

∂xn
∂A2

∂x1

∂A2

∂x2
· · · ∂A2

∂xn
...

...
. . .

...
∂An

∂x1

∂An

∂x2
· · · ∂An

∂xn




x=v

,

and letting u = v + e be the exact solution, the Taylor series for this system is

A(v + e) = A(v) + J(v)e + higher order terms.

Neglecting the higher order terms and subtracting A(v) from both sides, we see that

(2.1) J(v)e, = r,

which represents an approximation to the nonlinear system (1.1). It can be solved for e and
the current approximation v can be updated by v ← v + e. Iteration of this step is

(2.2) vj ← vj + J−1(vj) (fj −A(vj)) ,

a form of Newton’s method. By using multigrid to solve linear system (2.1) at each step we
obtain a combination of Newton’s method for the outer iteration and multigrid for the (linear)
inner iteration. This is called Newton-multigrid. We will present examples of this method in
section 5.

3. The Full Approximation Scheme (FAS)

While Newton-MG is often an extremely effective method, it does not use multigrid ideas
to treat the nonlinearity directly. To do this, we return to the residual equation (1.1) and use
it to determine a coarse-grid correction. Suppose we have found an approximation, vh, to the
original fine-grid problem

(3.1) Ah(uh) = fh .

The coarse-grid version of (1.1) is

(3.2) A2h(v2h + e2h)− A2h(v2h) = r2h.

The coarse-grid residual is chosen simply to be the restriction of the fine-grid residual

r2h = I2h
h rh = I2h

h (fh − Ah(vh))

and, similarly, it makes sense to restrict the fine-grid approximation using the same transfer
operator; that is, v2h = I2h

h vh.
Making these substitutions in the coarse-grid residual equation yields

(3.3) A2h(I2h
h vh + e2h

︸ ︷︷ ︸
u2h

) = A2h(I2h
h vh) + I2h

h (fh − Ah(vh))︸ ︷︷ ︸
f2h

.

The right side of this nonlinear system is known, and the equation is of the same form as
the original fine-grid equation (3.1). Assume we can find a solution to this system, which we
denote u2h. The coarse-grid error can be extracted from the solution by e2h = u2h−I2h

h vh, and



can then be interpolated up to the fine grid and used to correct the fine-grid approximation
vh:

vh ← vh + Ih
2he

2h or vh ← vh + Ih
2h(u

2h − I2h
h vh).

This scheme is the most commonly used nonlinear version of multigrid. Because the coarse-
grid problem is solved for the full approximation, rather than the error e2h, the method is
called the full approximation scheme (FAS). A two-grid version of this scheme is described as
follows:

Full Approximation Scheme (FAS)

• Restrict the fine-grid approximation and its residual: r2h = I2h
h (fh − Ah(vh)) and

v2h = I2h
h vh.

• Solve the coarse-grid problem A2h(u2h) = A2h(v2h) + r2h.
• Compute the coarse-grid approximation to the error: e2h = u2h − v2h.
• Interpolate the error approximation to the fine grid and correct the current fine-grid

approximation: vh ← vh + Ih
2he

2h.

It is easy to see that if A is a linear operator, then FAS reduces directly to the linear coarse-
grid correction scheme. Hence, FAS is in fact a generalization of the coarse-grid correction to
nonlinear problems. It is also useful to observe that vh is a fixed point of the FAS iteration if
and only if it is an exact solution of the fine-grid problem.

We may also view FAS as a way to alter the coarse-grid equations so that their approxima-
tion properties are substantially enhanced. This may be seen if the FAS coarse-grid equation
is written as

A2h(u2h) = f2h + τ 2h
h where τ 2h

h = A2h(I2h
h vh)− I2h

h Ah(vh)

defines the so-called tau correction τ 2h
h . Because τ 2h

h 6= 0 generally, the solution of the coarse-
grid FAS equation, u2h, is not the same as the solution of the coarsened original equation
A2h(u2h) = I2h

h fh . In fact, as FAS processing advances, u2h begins to achieve accuracy that
compares to that of the solution on the finest grid, albeit at the resolution of grid 2h.

4. Nonlinear Relaxation and Cycling

As described above, multigrid is the recursive application of a two-stage process performed
on two grids. For nonlinear problems FAS plays the role that the coarse-grid correction plays
in the linear case. For FAS to be effective in a multigrid method, it must be combined with a
relaxation scheme to ensure that the error is smooth before extracting it from the coarse grid.
Hence we require a relaxation method for nonlinear systems. Most linear relaxation schemes
have analogs for nonlinear systems; one of the most frequently used methods is nonlinear
Gauss-Seidel relaxation [5]. We can describe this algorithm just as in the linear case: for
1 ≤ j ≤ n, solve (A(v))j = fj for vj. We can write this equivalently by letting εj be the jth
unit vector, so that nonlinear Gauss-Seidel amounts to finding an s ∈ R such that

(A(v + sεj))j = fj, 1 ≤ j ≤ n.



Figure 1. Schedule of grids for (a) V-cycle, (b) W-cycle, and (c) FMG scheme,
all on four levels.

Typically, this is a nonlinear scalar equation in the scalar s, and the scalar Newton’s method
can be used to solve it efficiently [5]. The jth component is then updated by v ← v + sεj.
Updating all n components sequentially constitutes one iteration sweep of nonlinear Gauss-
Seidel.

The two-stage process of a) nonlinear relaxation followed by b) FAS correction is exactly
analogous to the relaxation/coarse-grid correction that comprises the two-grid scheme under-
lying conventional multigrid. Hence it is natural to ask at this point, “How do we solve the
coarse-grid problem A2h(u2h) = f2h + τ 2h

h ?” Nonlinear multigrid results by recursively apply-
ing the same nonlinear relaxation/FAS correction algorithm to solve this problem. Thus, FAS,
like its linear counterparts, is usually implemented as a V-cycle or W-cycle scheme (Figure 1).

Another important technique is the use of full multigrid (FMG) for obtaining a good initial
guess the fine-grid problem [3], in which for any given grid level, the problem is first solved
on the next coarser grid to provide and interpolated to the given grid to provide a good
initial guess. The solution process begins on the coarsest grid (Figure 1(c)). Convergence of
nonlinear iteration depends even more critically on a good initial guess, since the closer the
fine-grid initial guess is to the solution, the more linear the fine-grid problem appears, and the
more effective the solver will be. Using FMG for nonlinear problems typically ensures that the
interpolant Ih

2hu
2h lies in the basin of attraction of the fine-grid solver. Thus, we can expect



one FMG cycle to provide good accuracy whether we use Newton-multigrid or FAS V-cycles
on each new level. If greater accuracy is required, the FMG cycle is followed by successive
V-cycles.

5. Some Numerical Examples

We demonstrate the application of FAS and Newton-multigrid with a performance study of
these solvers applied to the two-dimensional nonlinear problem

−∆u(x, y) + γ u(x, y) eu(x,y) = f(x, y) in Ω,

u(x, y) = 0 on ∂Ω,

where Ω is the unit square [0, 1] × [0, 1]. Note that for γ = 0, this problem reduces to the
Poisson problem. We discretize this equation on uniform grids in both x- and y-directions;
grid spacings of h = 1/64 and h = 1/128 are used. We apply a standard second-order finite
difference operator to approximate the Laplacian, and the equation for the unknown ui,j at
(xi, yj) = (ih, jh) is

(5.1) h−2(4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1) + γ ui,j eui,j = fi,j,

for 1 < i, j < n. To enforce the boundary condition, we set

u0,j = uN,j = ui,0 = ui,N = 0

wherever these terms appear in the equations.
We consider first the implementation of an FAS solver for this problem. We must select

intergrid transfer operators; the easiest and most natural for this problem are to use a lin-
ear interpolation operator and a full-weighting restriction operator. The linear interpolation
operator can be defined by vh = Ih

2hv
2h, with components of vh given, for 0 ≤ i, j ≤ n

2
− 1, by

vh
2i,2j = v2h

ij ,

vh
2i+1,2j =

1

2

(
v2h

ij + v2h
i+1,j

)
,

vh
2i,2j+1 =

1

2

(
v2h

ij + v2h
i,j+1

)
,

vh
2i+1,2j+1 =

1

4

(
v2h

ij + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1

)
.

The full-weighting restriction operator produces at a coarse-grid point a value that is just an
average of the values at the corresponding fine-grid point and its eight nearest neighbors:

v2h
ij =

1

16

[
vh

2i−1,2j−1 + vh
2i−1,2j+1 + vh

2i+1,2j−1 + vh
2i+1,2j+1

+ 2
(
vh

2i,2j−1 + vh
2i,2j+1 + vh

2i−1,2j + vh
2i+1,2j

)

+ 4vh
2i,2j

]
,

for 1 ≤ i, j ≤ n
2
− 1.



Coarse-grid versions of the nonlinear operator are obtained in the same manner as the fine-
grid operator. That is, we employ discretization (5.1) with the appropriate grid spacing (2h,
4h, . . .) and index limits. Hence we may examine the individual component equations of the
FAS correction (3.3). Once a fine-grid approximation vh has been obtained and v2h = I2h

h vh

and r2h = I2h
h (fh−Ah(uh)) are computed, the individual component equations of (3.3) appear

as

(5.2)
4h−2(4u2h

i,j − u2h
i−1,j − u2h

i+1,j − u2h
i,j−1 − u2h

i,j+1) + γ u2h
i,j eu2h

i,j

= 4h−2(4v2h
i,j − v2h

i−1,j − v2h
i+1,j − v2h

i,j−1 − v2h
i,j+1) + γ v2h

i,j ev2h
i,j + r2h

i,j .

for 1 ≤ i, j ≤ n
2
− 1. Note that the left side of this equation is exactly the same form as (5.1)

and represents the nonlinear operator; the right side carries the effect of the nonlinearity in
the full approximation mode.

We employ nonlinear Gauss-Seidel as the relaxation method. Because the individual com-
ponent equations of the system are nonlinear, the relaxation uses scalar Newton’s method to
solve the (i, j)th equation for ui,j:

(5.3) ui,j ← ui,j − h−2(4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1) + γ ui,j eui,j − fi,j

4h−2 + γ (1 + ui,j) eui,j
.

An important observation is that while the nonlinear Gauss-Seidel is defined as solving the
(i, j)th equation for the (i, j)th unknown, in practice it is not necessary to solve this equation
to any real accuracy. The reason for this is that the relaxation is not being used as a solver;
rather, its purpose is to smooth the error, and this is accomplished with very little effort.
Although no fixed rule exists to determine how many Newton steps are required in each
nonlinear Gauss-Seidel sweep, a small number often suffices (we use a single Newton step for
each equation in these experiments). It should be noted that the number of Newton steps
used on the scalar problem can have a significant impact on both the effectiveness and the
cost of the FAS algorithm.

At the “bottom” of the V -cycle is the coarsest-grid problem. For linear multigrid it is
usually simple to solve the system on the coarsest grid exactly, because it requires either the
solution of one linear equation in one unknown or the inversion of a very small matrix. Here,
however, we use as the coarsest grid a 3× 3 grid with a single interior point, and the equation
to be solved for u1,1 is

16u1,1 + γ u1,1 eu1,1 = f1,1.

Because this equation is nonlinear, the “solve” on the coarsest grid requires the use of Newton’s
method. All experiments presented here use a 3× 3 grid as the coarsest grid, and in all cases
it is determined experimentally that a single Newton step is sufficient.

For these experiments we let the exact solution to the problem be

u(x, y) = (x− x2)(y − y2),

which results in the source term

f(x, y) = 2((x− x2) + (y − y2)) + γ (x− x2)(y − y2) e(x−x2)(y−y2).



It should be observed that the for this particular solution, a second-degree polynomial, there
is no discretization error, which facilitates examination of the results.

We first examine the effectiveness of an FAS V-cycle solver for various choices of γ, from
the linear case (γ = 0) through cases in which the nonlinear part of the operator dominates
(γ = 10, 000). Each test is posed on a 127× 127 interior grid, and cycling continues until the
norm of the residual is smaller than 10−10. We report the average convergence rate and the
number of V-cycles required to achieve the desired tolerance. The results appear in Table 1.

γ
0 1 10 100 1000 10000

Convergence Factor .136 .135 .124 .098 .072 .039
Number of FAS cycles 12 12 11 11 10 8

Table 1. FAS performance for the problem −∆u + γ u eu = f , discretized on
grid with 127× 127 interior points.

This particular problem becomes easier to solve as the nonlinear term becomes more dom-
inant, which is, in general, an uncommon effect in a nonlinear problem. Since the nonlinear
term involves only ui,j and none of its neighboring values, as γ becomes larger the problem
becomes more local in nature. As this occurs, the relaxation sweeps become more effective,
being local in nature. This phenomenon is analogous to increasing diagonal dominance in the
linear case. This type of behavior would not be expected for other types of nonlinearity.

We can compare the performance of the FAS solver Newton’s method for this problem. The
Jacobian matrix for this nonlinear problem is a block tridiagonal system

J(u) =




J1 B
B J2 B

B J3 B
. . . . . . . . .

B JN−2 B
B JN−1




,

where each of the block matrices is (n − 1) × (n − 1). The off-diagonal blocks B are all
−1/h2 times the identity matrix. The diagonal blocks are tridiagonal, with the constant value
−1/h2 on the super- and sub-diagonals. The diagonal entries of Jj, corresponding to the grid
locations (xi, yj) = (ih, jh) for fixed j and 1 ≤ i ≤ n− 1, are given by

(Jj)i,i =
4

h2
+ γ ui,j eui,j .

For this experiment, we use a banded LU decomposition to Jacobian matrix at each Newton
step. Because J(u) is sparse and narrow-banded, so are the factors L and U and doth the
decomposition and the solve can be computed quite efficiently. Table 2 gives the results of
applying Newton’s method to the problem for various choices of γ.



γ
0 1 10 100 1000 10000

Convergence Factor 2.6e-13 3.9e-5 7.4e-5 3.2e-4 1.9e-4 1.2e-4
Newton Iterations 1 3 3 4 4 4

Table 2. Performance of Newton’s method for the problem −∆u + γ u eu = f .

Tables 1 and 2 reveal that Newton’s method converges much faster than does FAS. This
should not be surprising, as Newton’s method converges quadratically, while multigrid is gen-
erally linear in its convergence. However, this comparison fails to consider the computational
costs of the methods, which we will discuss shortly.

Before doing so, however, we consider the use of multigrid V-cycles as a an method for
inverting the Jacobian system in the Newton iteration. If we solve the Jacobian system to the
same level of accuracy by V-cycles as was done with the LU decomposition, the results should
be essentially the same as in Table 2. However, it may be effective to solve the Jacobian system
only approximately. This technique is known as the inexact Newton’s method[4]. Performing
inexact Newton by using only a few V-cycles is a method we denote Newton-MG.

The following experiment is designed to compare the performance of FAS, Newton’s meth-
ods, and Newton-MG. Consider the same operator as before, with γ = 10, and let the exact
solution be u(x, y) = (x2 − x3) sin(3πy). Unlike in the previous experiments, this solution
results in a nontrivial discretization error. The resulting source term is

(5.4) −∆u + γueu =
((

9π2 + γe(x2−x3) sin(3πy)
)

(x2 − x3) + 6x− 2
)

sin(3πy).

The problem is discretized with n = 128 so that the interior grid is 127× 127.

No. outer No. inner
Method iterations iterations Megaflops
Newton 3 – 1660.6

Newton-MG 3 20 56.4
Newton-MG 4 10 38.5
Newton-MG 5 5 25.1
Newton-MG 10 2 22.3
Newton-MG 19 1 24.6

FAS 11 – 27.1

Table 3. Comparison of FAS, Newton, and Newton-multigrid methods for the
problem −∆u+ γ u eu = f on a 127× 127 grid. In all cases, a zero initial guess
is used.

Table 3 shows the performance on and the computational costs of FAS, Newton (with a
direct LU -based solve), and Newton-MG applied to (5.4), resulting in the nonlinear system



(5.1). The iteration is stopped when the residual norm is less than 10−10. The column labeled
outer iterations lists how many V-cycles (for FAS) or Newton steps (for Newton and Newton-
MG) are required to achieve the desired tolerance. For Newton-MG, we vary the number of
V-cycles used to approximately solve the Jacobian system. The column labeled inner iterations
gives the number of V-cycles used in the approximate inversion of the Jacobian system. The
last column, labeled Megaflops, is the number of millions of floating-point operations expended
by the methods. For this example, using these performance measurements, it appears that
both of the multigrid-based methods are much more efficient than Newton’s method using a
direct solver. Furthermore, Newton-MG compares well to FAS when the number of inner MG
iterations is properly tuned.

While the convergence properties may be representative for a fairly broad class of nonlinear
problems, we must emphasize that several factors can affect the operation counts dramatically.
For example, they may depend heavily on the character of the nonlinearity, the details of
implementation, the computer architecture, and the programming language. It should also
be remembered that we have not accounted for the cost of evaluating the nonlinear function,
which is highly problem-dependent, and, for many problems, may be the most costly part of
the process. It does seem fairly clear, however, that for large problems the multigrid-based
methods will outperform Newton’s method using direct solvers. Further, it is apparent that,
if Newton-MG is to be competitive with FAS, only a few V-cycles should be used in solving
the Jacobian system. In the end, there may be very little difference in the performance
between the two carefully designed multigrid-based schemes. The choice may depend largely
on convenience and other available algorithm features (for example, τ -extrapolation in FAS
[2]).

We should consider one further option: combining the Newton and FAS methods with a full
multigrid (FMG) scheme [2, 3]. In FMG, for each new fine grid, the initial guess is obtained
by first solving the nonlinear problem on the next coarser grid. For linear multigrid problems,
a single FMG cycle suffices to reduce the error to the level of discretization. One indication
that this is the case is that after a single FMG cycle continued V-cycles have the effect of
further decreasing the residual (as the linear systems are solved with increasing accuracy) but
the norm of the error no longer decreases.

Table 4 shows the results of applying the FMG-FAS combination to (5.4). Norms are shown,
for the residual and the error, after one FMG-FAS cycle and after each of eight subsequent
FAS V-cycles. Both the FMG cycle and the FAS V-cycles are performed using nonlinear
Gauss-Seidel. The norm of the error is reduced to 2.0 × 10−5 by the FMG-FAS cycle alone.
Further FAS V-cycling does not reduce the error, indicating that it has reached the level of
discretization. However, subsequent FAS V-cycles do reduce the residual norm further until
it reaches the prescribed tolerance of 10−10. The column labeled Mflops in the table gives the
cumulative number of floating point operations after each stage of the computation.

Analogous results for FMG with a Newton solver applied to (5.4) are shown in Table 5.
Again we use FMG, applying one step of Newton-MG on each level in the FMG process.
Each Newton-MG step starts with an initial guess from the next coarser grid and uses one V-
cycle. Norms are shown for the residual and error after one FMG-Newton-MG cycle followed
by subsequent Newton-MG cycles on the fine grid. The results are very similar to those for



Cycle ||r|| ratio ||e|| Mflops
FMG-FAS 1.07e-2 2.00e-5 3.1

FAS V 1 6.81e-4 0.064 2.44e-5 5.4
FAS V 2 5.03e-5 0.074 2.49e-5 7.6
FAS V 3 3.89e-6 0.077 2.49e-5 9.9
FAS V 4 3.25e-7 0.083 2.49e-5 12.2
FAS V 5 2.98e-8 0.092 2.49e-5 14.4
FAS V 6 2.94e-9 0.099 2.49e-5 16.7
FAS V 7 3.01e-10 0.102 2.49e-5 18.9
FAS V 8 3.16e-11 0.105 2.49e-5 21.2

Table 4. Performance of the FMG-FAS cycle, followed by eight FAS V-cycles,
on −∆u + γueu = f , with γ = 10. The grid size is 127 × 127. Note that one
FMG-FAS cycle reduces the error to the level of discretization, and that subse-
quent FAS V-cycles further reduce the residual norm quickly to the prescribed
tolerance of 10−10.

Cycle ||r|| ratio ||e|| Mflops
FMG-Newton-MG 1.06e-002 2.50e-005 2.4

Newton-MG 1 6.72e-004 0.063 2.49e-005 4.1
Newton-MG 2 5.12e-005 0.076 2.49e-005 5.8
Newton-MG 3 6.30e-006 0.123 2.49e-005 7.5
Newton-MG 4 1.68e-006 0.267 2.49e-005 9.2
Newton-MG 5 5.30e-007 0.315 2.49e-005 10.9
Newton-MG 6 1.69e-007 0.319 2.49e-005 12.6
Newton-MG 7 5.39e-008 0.319 2.49e-005 14.3
Newton-MG 8 1.72e-008 0.319 2.49e-005 16.0
Newton-MG 9 5.50e-009 0.319 2.49e-005 17.7

Newton-MG 10 1.76e-009 0.319 2.49e-005 19.4
Newton-MG 11 5.61e-010 0.319 2.49e-005 21.1
Newton-MG 12 1.79e-010 0.319 2.49e-005 22.8
Newton-MG 13 5.71e-011 0.319 2.49e-005 24.5

Table 5. Performance of the FMG-Newton-MG cycle, followed by 13 Newton-
MG steps, on −∆u + γueu = f , with γ = 10. The grid size is 127× 127. Note
that one FMG-Newton-MG cycle reduces the error to the level of discretization,
and that subsequent Newton-MG steps on the fine grid further reduce the residual
error to the prescribed tolerance of 10−10.

FMG-FAS in Table 4. Observe that the norm of the actual error is reduced to the level



of discretization by one FMG-Newton cycle. Subsequent Newton-MG cycles do, however,
continue to reduce the norm of the residual effectively to below the prescribed tolerance.

Both of these methods reduce the error to the level of discretization in one FMG cycle.
The flop count indicates that the methods are similar in cost, with the FMG-Newton-MG
cycle somewhat less expensive (2.4 Mflops) than the FMG-FAS (3.1 Mflops). However, the
individual Newton-MG steps on the fine grid, although cheaper, are not quite as effective as
FAS V-cycles for reducing the residual norm. Indeed, if the goal is to reduce the residual
norm to 10−10, it is somewhat less expensive (21.2 vs. 26.2 Mflops) to use FAS than Newton-
MG. Again, however, we note that comparative measures of efficiency depend critically on
specific implementation details, computing environment, and problem characteristics. The
major conclusion to be reached is that both methods are very efficient and robust.

6. Conclusions

We have presented this material very much in an overview or tutorial style, and have not
discussed particular applications. Both Newton-MG and FAS are in widespread use for many
application areas, including computational fluid dynamics, radiation transport, image recon-
struction, and porous media flow, among others. Still other techniques, including hybrids of
various linear and nonlinear methods, are known or are under development. Current research
also includes applying FAS to unconventional multigrid, such as algebraic multigrid (AMG).

Two major factors determine what sort of nonlinear multigrid solver is applied. First,
one must determine how the nonlinear operator can be represented on the coarse grid. The
most common approach is to apply the same discretization method with a coarse spacing
as was used to discretize the fine grid problem. If this is unfeasible of overly expensive,
however, other choices must be considered if FAS is to be used. Sometimes it is possible to
use the so-called Galerkin method, in which the action of the coarse-grid operator is given
by A2h(u2h) = I2h

h Ah(Ih
2hu

2h). The second factor is the relative expense of evaluating the
nonlinear function versus the cost of forming the Jacobian matrix. In many applications
evaluating the nonlinear function is a very expensive computational procedure; indeed, it can
be the most costly part of the FAS algorithm. If the Jacobian matrix can be evaluated with
relative ease, Newton-MG may be preferable. These determinations are highly dependent on
the nature of the specific problem at hand.

For any nonlinear method, it is well-known that the iteration is much more reliable and
much faster if the initial guess is good. Hence, it is well worth the effort to obtain the highest
quality initial guess possible. As a result, nested iteration, the method that obtains a good
initial guess by first solving the problem on a coarser grid, should be employed. Doing this
on all levels is the heart of the FMG approach. Whether FAS, Newton-MG, or some other
nonlinear solver is obtained, using the FMG scheme will improve both speed of convergence
and robustness.
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